If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-35x-4=0
a = 21; b = -35; c = -4;
Δ = b2-4ac
Δ = -352-4·21·(-4)
Δ = 1561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1561}}{2*21}=\frac{35-\sqrt{1561}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1561}}{2*21}=\frac{35+\sqrt{1561}}{42} $
| 4n+5n+15=5n+7n-1 | | X2-4x-12=0 | | -15=-18+3y | | 7x+8=6x+3 | | -19+7x=3(1-5x) | | 2x=0.5+0.75 | | (d+17)/2=51/3 | | 36x^2-56x+21=0 | | -11x+3+2x=21 | | 2/3y-1=3/2 | | 3/4t^2+21/8+9/8=0 | | X3-3x2-10=0 | | 21x=-85 | | -2x-2+11x=16 | | 36x2+87x+45=0 | | x+0.08=198.72 | | 8c-5=48 | | 3y-30=2y+40 | | (5x/4)=1-(1/5)(x-(1/10)) | | -88(n-12)=n-89 | | ((2r-3)/4)-8=50 | | 5p+7(-8p-7)=-6-8p | | 3y-30=27+40 | | 7=4x-6 | | 4x-16=360 | | 18-10=x/5 | | 2(s-5)=2(s+5 | | -108•3.14=6•3.14j | | 9x+7-4x=17 | | 6/11-8x=-8x+1/11 | | -88(n-12)=n+(-89) | | X^2-272x+4096=0 |